If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+5t-14=0
a = 2; b = 5; c = -14;
Δ = b2-4ac
Δ = 52-4·2·(-14)
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{137}}{2*2}=\frac{-5-\sqrt{137}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{137}}{2*2}=\frac{-5+\sqrt{137}}{4} $
| 2.5(7-y)+1.6y=13 | | 24+7u=73 | | 28x+30=20x+26 | | 3(4x+2=20x-9x-2 | | g/2+13=26 | | -3n+2+7-5n=-23 | | 0.84=x-9.5 | | 2p-16+3p=4 | | 4(5w-7)=20w+2 | | p+4/15;p=4/5 | | -4n-3+6n-4=-21 | | 4(4x+3)=19x+9—3x+3 | | 15-y=28 | | -32=-8k+7k | | 62+55+x=180 | | 16=-4+2w | | 3^(x+6)=34. | | -0.9p=-2.7 | | 9m−4=68 | | –4w=–16 | | 8x=3x32 | | -7.7n-6.7=9.2 | | .35(x+4)=3(2x-6) | | 10r+21=91 | | 8m+60=180 | | 8x=3⋅32 | | 6,7+x=-1.3 | | 3x+12=9x-24 | | 11+7b=46 | | 4.4=t/9.5 | | 12x/8=20+8x/8 | | 24=14x-x^2 |